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NOTATIONS AND NUMERICAL VALUE USED

a inner radius, 1"

b outer radius, 2"

rO cylindrical coordinates

a normal stress

r oyield stress, 170 ksi

*Airy stress function

A,B,C,D superposition constants

u displacement

d coefficient of dislocation

G shear modulus

v Poisson's ratio, 0.3

Ithermoelastic potential

T temperature at r

TaTb temperature at r=a, r=b

E Young's modulus, 30xl0 6 psi

a coefficient of thermal expansion, 6.8xi0 - in/in/*F

p radius of the autofrettaged interface

TO Ptemperature at r-p

ii*



FULLY ALOFRETTAGED CASE

The piane strain stress distribution of a fully autofrettaged

tube using von Mises yield condition and the incompressibility condi-

tion is given by
2 og r a2  b2  bO= - blo b- a (1 - -)log - } (1)

b b2-a2  r2  a

r 0a 2  b2  b

b a

This distribution can be simulated either by a dislocation, Figure 1,

or by a steady state thermal loading.

ii

Figure 1. A portion of the ring between two adjacent cross sections
is cut out. If the ends of the ring are joined again,
stresses thus produced may simulate the residual stresses
due to autofrettageo

1



Dislocation Solution:

Using biharmonic Airy stress function1 the dislocation solution

can be obtained by

* A log r +Br 2 +Cr 2 log r (3)

The dislocation is expressed by the jump condition

0=27r
(2Gu6] d -r (4)

60

This condition together with traction free conditions at the inner and

outer radii gives

Au d -~2log b-
47r(1l-V) b 2-a 2  a

B d 2a 2  log b + 1 +2 log b)
16wr(l-v) (b 2_a2) a

C d (5)

Bir(I-v)

Using the formulas

ar ar 2  01 r ar

CI 2. (6)
06 ar 2

ITimoshenko. S. and Goodier, J. N., Theory of Elasticity, McGraw-Hill
Co., 1951, 2nd Edition, p. 56.
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The stress distribution is then obtained from (3) and (5) as

= d {log 2 a2 
2 _b g b}r (1l-v) b b2-a 2 (-r" o a(7

a
2

__ _bdlogiocto 7{b2a2 (+Tog + _} (8)

eB 4Tr(I-v) b b-2 ra

The equivalence between (7), (8) and (1), (2) is easily seen with

dislocation and yield stress related by

d 2a, (9)

Solution of Thermal Loading:

Using the superposition of Airy stress function and thermo-

elastic potential ' (ref. 2), the solution can be symbolically written

s [S] = Al[i-r 2 ] + Bl[iP-r 2 logr] + Cl[-logr] + Dl[c-r 2] (10)

with T. and Tb as steady state temperatures at the inner and outer

radii respectively and using the traction free boundary conditions we

have
Ea (l+loga)(Ta-Tb)1

A1 4 1v) [Ta + log(b/a)

Bl f- Ea (Ta-Tb)4(l-v) log(b/a)

C1 2a~b2  (I
- 2a 2 B 1 log(b/a)

1 b2-a 2  1

D A + I B1 [I + 2logb + 2a2  l
1 =A- log ()]

2Sadowsky, M. A. and Hussain, M. A., "Thermal Stress Discontinuities

in Microfibers," Watervliet Arsenal Technical Report WVT-RR-6401,
April 1964.



Using the formulas

r r ~ae -~

1ar 2  (12)

The stress distribution is obtained from (6), (10), (11) as

Cr=-Ect(Ta-Tb) _{log - a2 (1 b 2 l.og b~. (13)
r 2(l-v)log(b/a) b b2 -a 2  r 2  a

Cy= Eot(Ta-Tb) _{l + log r~ - a~ 2 ( + b 2)log i~1 (14)
6 2(l-,v)log(b/a) b b2-a 2  r 2  a

The equivalence between (13), (14) and (1), (2) is- easily seen with

the temperature gradient and yield stress related by

Ea(Ta-Tb) 2ao (5
2(l-v)log(b/a) /T

PARTIALLY AUTOFRETTAGED CASE

The plane strain stress distribution of a partially autofrettaged

tube, using the same von Mises and incompressibility conditions as

before, is

I P~2 1
+(lo 72 *~-) 1 =2~)l a<r<p (16)

arm
I o (p2_.p(.L 1_

1)3 (bj - rt pr?<b 17

0 (Zlog 1~. + j -) P. + ) a<r ~ (18)
a .P b2' 'b 2  r 2 <

1 1 p<r<b (19)
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where P = by + 2 'o~/a]

a b

1hr PI :_b) [I( - b + 2og(p/a)]o

Solutions of Thermal Loading:

Using the superposition of Airy stress function q and thermo-

elastic potential p, it is sufficient to write the solution symbolically

as

A2 [i-r 2 ] + B2 [t-r 2 logr] + C2 [ip-logr] + D2 [ -r 2
1 , a<r<p (20)

A3 [*-r 2] + C3 [p-logr] + D3 [0-r 2] , p<r<b (21)

In order to obtain stress distribution given by (16)-(19) we must have

A -2 + 2logp b 2 -pl) ] VA2 -2 b 2  1 7

B2 = -C

2C2= - Pl 1 (22)

A 3 3 =2b2 (P -P1) ;o

C3 = (p2-pl) o

The temperature profile from (20) and (21) is

E T = 4A 2 + 4B2(l + logr) , a<r<p (23)
(l-v) 4A3  p<r<b

It is seen that the temperature is constant in the outer region,

p<r<b, and logarithmically distributed in the inner region, a<r<p.

Let Ta, Tp be the temperatures at r = a, and r = p respectively. These

temperature boundary conditions give the equivalence between the

temperature gradient and the yield stress



9,

Ea*(Ta'Tp) 2°2

2(-v))log(p/a)

The temperature profile of (23) is then given by

T = Ta - (Ta-Tp) log(r/a) a<r<p
log(p/a)

(25)

T = p<r<b

Once the temperature distribution is known, all the remaining super-

position constants can be specifically determined. It should be noted

that we have neglected the axial stress computation which can easily

be taken care of by the method discussed on page 409 of Reference 1.

A NUMERICAL EXAMPLE

Consider a tube of inner radius a = 1, outer radius b = 2, with

material constants E - 30x10 6 psi, v = 0.3, a = 6.8x10- 6 in/in/°F,

ao = 170xl0' psi; the temperature distribution was computed from (25)

for 30%, 60% and 100% autofrettaged cases, shown in Figure 2. Using

these temperature distributions as temperature input in a finite

difference computer program based on the theory of thermal stress in

section 9-10 of Reference 3 we obtain the stress distributions. The

results are compared in Table I with the exact solution given by (14),

and are also graphically shown in Figure 3.

1Timoshenko, S. and Goodier, J. N., Theory of Elasticity, McGraw-Hill
Co., 1951, 2nd Edition, p. 56.
3Boley, B. A. and Weiner, J. H., "Theory of Thermal Stresses," John
Wiley & Sons, 1960.
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TABLE I. COMPARISON OF a0 (PSI) WITH FINITE DIFFERENCES

Percent Overstrain r Exact Solution Finite Difference

1.0 - 92190 - 92897
1.1 - 48446 - 49567
1.2 - 12325 - 13636
1.3 18205 16825
1.4 16442 15236

30% 1.5 15020 13948
1.6 13856 12890
1.7 12891 12010
1.8 12083 11271
1.9 11398 10643
2.0 10814 10106

1.0 -143955 -145316
1.1 - 95719 - 97552
1.2 - 56182 - 58225
1.3 - 22993 - 25102
1.4 5422 3323

60% 1.5 30153 28107
1.6 51978 1 50007
1.7 48359 46593
1.8 45326 43724
1.9 42759 41289
2.0 40568 39205

1.0 -166539 -1688S4
1.1 -116343 -119099
1.2 - 75316 - 78246
1.3 - 40966 - 43929
1.4 - 11631 - 14550

100% 1.5 13842 11005
1.6 36275 33539
1.7 56267 53640
1.8 74269 71749
1.9 90621 88206
2.0 105590 103274

8



0 (ksi)

100

0• ...... A o r

100% overstrain.
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The same temperature distribution was also used in the finite

element NASTRAN program using a TEMP (LOAD) request in the case control

dock. The results are again compared with the exact solution in

Table II.

CONCLUSION

A simple method has been devised to simulate partial autofrettage

residual stresses in thick walled cylinders.

10



TABLE II. COMPARISON OF a8 (PSI) WITH FINITE ELEMENTS

Percent Overstrain r Exact Solution Finite Element (NASTRAN)

1.025 - 80392 - 80638
1.125 - 38795 - 38981
1.225 - 4231 - 4375
1.325 17727 17818
1.425 16058 16143

30% 1.525 14707 14782
1.625 13597 13671
1.725 12675 12740
1.825 11900 11964
1.925 11243 11307

1.025 -130910 -131102
1.125 - 85128 - 85261
1.225 - 47361 - 47454
1.325 - 15490 - 15558
1.425 11915 11872

60% 1.525 35856 35827
1.625 51010 51136
1.725 47551 47660
1.825 44645 44754
1.925 42179 42283

1.025 -152950 -153095
1.125 -105342 -105430
1.225 - 66178 - 66228
1.325 - 33215 - 33240
1.425 - 4938 - 4941

100% 1.525 19709 19716
1.625 41482 41496
1.725 60939 60972
1.825 78500 78538
1.925 94484 94519

11
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